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Laarge-Scale Data Engineering 

The MapReduce Framework & Hadoop 
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Key premise: divide and conquer 

work 
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result 
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Parallelisation challenges 

• How do we assign work units to workers? 

• What if we have more work units than workers? 

• What if workers need to share partial results? 

• How do we know all the workers have finished? 

• What if workers die? 

• What if data gets lost while transmitted over the network? 

What’s the common theme of all of these problems? 
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Common theme? 

• Parallelization problems arise from: 

– Communication between workers (e.g., to exchange state) 

– Access to shared resources (e.g., data) 

• Thus, we need a synchronization mechanism 
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Managing multiple workers 

• Difficult because 

– We don’t know the order in which workers run 

– We don’t know when workers interrupt each other 

– We don’t know when workers need to communicate partial results 

– We don’t know the order in which workers access shared data 

• Thus, we need: 

– Semaphores (lock, unlock) 

– Conditional variables (wait, notify, broadcast) 

– Barriers 

• Still, lots of problems: 

– Deadlock, livelock, race conditions... 

– Dining philosophers, sleeping barbers, cigarette smokers... 

• Moral of the story: be careful! 
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Current tools 

• Programming models 

– Shared memory (pthreads) 

– Message passing (MPI) 

• Design patterns 

– Master-slaves 

– Producer-consumer flows 

– Shared work queues 

 

message passing 
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Parallel programming: human bottleneck 

• Concurrency is difficult to reason about 

• Concurrency is even more difficult to reason about 

– At the scale of datacenters and across datacenters 

– In the presence of failures 

– In terms of multiple interacting services 

• Not to mention debugging… 

• The reality: 

– Lots of one-off solutions, custom code 

– Write you own dedicated library, then program with it 

– Burden on the programmer to explicitly manage everything 

 

• The MapReduce Framework alleviates this 

– making this easy is what gave Google the advantage 
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What’s the point? 

• It’s all about the right level of abstraction 

– Moving beyond the von Neumann architecture 

– We need better programming models 

• Hide system-level details from the developers 

– No more race conditions, lock contention, etc. 

• Separating the what from how 

– Developer specifies the computation that needs to be performed 

– Execution framework (aka runtime) handles actual execution 

 

The data center is the computer! 
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Source: Google 

The Data Center is the Computer 

 

Can you program it? 
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MAPREDUCE AND HDFS 
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Big data needs big ideas 

• Scale “out”, not “up” 

– Limits of SMP and large shared-memory machines 

• Move processing to the data 

– Cluster has limited bandwidth, cannot waste it shipping data around 

• Process data sequentially, avoid random access 

– Seeks are expensive, disk throughput is reasonable, memory 

throughput is even better 

• Seamless scalability 

– From the mythical man-month to the tradable machine-hour 

• Computation is still big 

– But if efficiently scheduled and executed to solve bigger problems we 

can throw more hardware at the problem and use the same code 

– Remember, the datacenter is the computer 
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Typical Big Data Problem 

• Iterate over a large number of records 

• Extract something of interest from each 

• Shuffle and sort intermediate results 

• Aggregate intermediate results 

• Generate final output 

Key idea: provide a functional abstraction for these two operations 
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MapReduce 
• Programmers specify two functions: 

map (k1, v1) → [<k2, v2>] 

reduce (k2, [v2]) → [<k3, v3>] 

– All values with the same key are sent to the same reducer 

shuffle and sort: aggregate values by keys 

reduce reduce reduce 

map map map map 

a 1 b 2 c 6 c 3 a 5 c 2 

a 1 b 2 6 3 5 c 2 

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8 

b 7 c 8 

8 7 

r1 s1 r2 s2 r3 s3 
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MapReduce runtime 
• Orchestration of the distributed computation 

• Handles scheduling 

– Assigns workers to map and reduce tasks 

• Handles data distribution 

– Moves processes to data 

• Handles synchronization 

– Gathers, sorts, and shuffles intermediate data 

• Handles errors and faults 

– Detects worker failures and restarts 

• Everything happens on top of a distributed file system (more information 
later) 
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MapReduce 
• Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’, v’>* 

– All values with the same key are reduced together 

• The execution framework handles everything else 

• This is the minimal set of information to provide 

• Usually, programmers also specify: 

partition (k’, number of partitions) → partition for k’ 

– Often a simple hash of the key, e.g., hash(k’) mod n 

– Divides up key space for parallel reduce operations 

combine (k’, v’) → <k’, v’>* 

– Mini-reducers that run in memory after the map phase 

– Used as an optimization to reduce network traffic 
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Putting it all together 

shuffle and sort: aggregate values by keys 

reduce reduce reduce 

map map map map 

a 1 b 2 c 6 c 3 a 5 c 2 

a 1 b 2 9 8 5 c 2 

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8 

b 7 c 8 

7 

r1 s1 r2 s2 r3 s3 

combine combine combine combine 

a 1 b 2 c 9 a 5 c 2 b 7 c 8 

partition partition partition partition 



event.cwi.nl/lsde 

Two more details 

• Barrier between map and reduce phases 

– But we can begin copying intermediate data earlier 

• Keys arrive at each reducer in sorted order 

– No enforced ordering across reducers 
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“Hello World”: Word Count 

Map(String docid, String text): 
     for each word w in text: 
          Emit(w, 1); 
 
Reduce(String term, Iterator<Int> values): 
     int sum = 0; 
     for each v in values: 
          sum += v; 
     Emit(term, sum); 
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MapReduce Implementations 

• Google has a proprietary implementation in C++ 

– Bindings in Java, Python 

• Hadoop is an open-source implementation in Java 

– Development led by Yahoo, now an Apache project 

– Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, … 

– The de facto big data processing platform 

– Rapidly expanding software ecosystem 

• Lots of custom research implementations 

– For GPUs, cell processors, etc. 
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Adapted from (Dean and Ghemawat, OSDI 2004) 
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How do we get data to the workers? 

Compute Nodes 

What’s the problem here? 

NAS 

NAS cluster 

client machine 

file server farm  

(NAS,SAN,..) 

worker 
worker 

worker 
worker 

worker 
worker 

worker 
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Distributed file system 

• Do not move data to workers, but move workers to the data! 

– Store data on the local disks of nodes in the cluster 

– Start up the workers on the node that has the data local 

 

 

 

 

• Why? 

– Avoid network traffic if possible 

– Not enough RAM to hold all the data in memory 

– Disk access is slow, but disk throughput is reasonable 

• A distributed file system is the answer 

– GFS (Google File System) for Google’s MapReduce 

– HDFS (Hadoop Distributed File System) for Hadoop 

Note: all data is replicated for fault-tolerance (HDFS default:3x) 

Compute Nodes 
worker worker worker worker worker worker worker worker worker worker worker worker 

HDFS (GFS) 

Distributed  
File-system 

MapReduce Job  

virtual 

real 
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GFS: Assumptions 

• Commodity hardware over exotic hardware 

– Scale out, not up 

• High component failure rates 

– Inexpensive commodity components fail all the time 

• “Modest” number of huge files 

– Multi-gigabyte files are common, if not encouraged 

• Files are write-once, mostly appended to 

– Perhaps concurrently 

• Large streaming reads over random access 

– High sustained throughput over low latency 

GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 
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GFS: Design Decisions 

• Files stored as chunks 

– Fixed size (64MB) 

• Reliability through replication 

– Each chunk replicated across 3+ chunkservers 

• Single master to coordinate access, keep metadata 

– Simple centralized management 

• No data caching 

– Little benefit due to large datasets, streaming reads 

• Simplify the API 

– Push some of the issues onto the client (e.g., data layout) 

HDFS = GFS clone (same basic ideas) 
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From GFS to HDFS 

• Terminology differences: 

– GFS master = Hadoop namenode 

– GFS chunkservers = Hadoop datanodes 

• Differences: 

– Different consistency model for file appends 

– Implementation 

– Performance 

For the most part, we’ll use Hadoop terminology 
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Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state (block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace /foo/bar 
block 3df2 

Application 

HDFS Client 

HDFS architecture 
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Namenode responsibilities 

• Managing the file system namespace: 

– Holds file/directory structure, metadata, file-to-block mapping, access 

permissions, etc. 

• Coordinating file operations: 

– Directs clients to datanodes for reads and writes 

– No data is moved through the namenode 

• Maintaining overall health: 

– Periodic communication with the datanodes 

– Block re-replication and rebalancing 

– Garbage collection 
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Putting everything together 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 
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PROGRAMMING FOR A DATA 
CENTRE 
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Programming for a data centre 

• Understanding the design of warehouse-sized computes 

– Different techniques for a different setting 

– Requires quite a bit of rethinking 

• MapReduce algorithm design 

– How do you express everything in terms of map(), reduce(), 

combine(), and partition()? 

– Are there any design patterns we can leverage? 
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Building Blocks 

Source: Barroso and Urs Hölzle (2009) 
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Storage Hierarchy 



event.cwi.nl/lsde 

Scaling up vs. out 

• No single machine is large enough 

– Smaller cluster of large SMP machines vs. larger cluster of commodity 

machines (e.g., 8 128-core machines vs. 128 8-core machines) 

• Nodes need to talk to each other! 

– Intra-node latencies: ~100 ns 

– Inter-node latencies: ~100 s 

• Let’s model communication overhead 
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Modelling communication overhead 

• Simple execution cost model: 

– Total cost = cost of computation + cost to access global data 

– Fraction of local access is inversely proportional to size of cluster 

• 1/n of the work is local 

– n nodes (ignore cores for now) 

 

– Three scenarios: 

• Light communication: f =1 

• Medium communication: f =10 

• Heavy communication: f =100 

• What is the cost of communication? 

1 ms + f  [100 ns  (1/n) + 100 s  (1 - 1/n)] 
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Overhead of communication 
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Seeks vs. scans 

• Consider a 1TB database with 100 byte records 

– We want to update 1 percent of the records 

• Scenario 1: random access 

– Each update takes ~30 ms (seek, read, write) 

– 108 updates = ~35 days 

• Scenario 2: rewrite all records 

– Assume 100MB/s throughput 

– Time = 5.6 hours(!) 

• Lesson: avoid random seeks! 

Source: Ted Dunning, on Hadoop mailing list 
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Important Latencies 

L1 cache reference  0.5 ns 

L2 cache reference  7 ns 

Main memory reference 100 ns 

Send 2K bytes over 1 Gbps network 20,000 ns 

SSD read one page (random) 100,000 ns 

Read 1 MB sequentially from memory 250,000 ns 

Round trip within same datacenter 500,000 ns 

Read 1MB sequentially from SSD 2,000,000 ns 

Magnetic Disk read one page (random) 10,000,000 ns 

Read 1 MB sequentially from magnetic disk 20,000,000 ns 

Send packet CA → Netherlands → CA 150,000,000 ns 

Read 100MB sequentiall from disk 1,000,000,000 ns 

* According to Jeff Dean (LADIS 2009 keynote) 

0.4MB/s 
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DEVELOPING ALGORITHMS 
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Optimising computation 

• The cluster management software orchestrates the computation 

• But we can still optimise the computation 

– Just as we can write better code and use better algorithms and data 

structures 

– At all times confined within the capabilities of the framework 

• Cleverly-constructed data structures 

– Bring partial results together 

• Sort order of intermediate keys 

– Control order in which reducers process keys 

• Partitioner 

– Control which reducer processes which keys 

• Preserving state in mappers and reducers 

– Capture dependencies across multiple keys and values 
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Preserving State 

Mapper object 

setup 

map 

cleanup 

state 
one object per task 

Reducer object 

setup 

reduce 

close 

state 

one call per input  

key-value pair 

one call per  

intermediate key 

API initialization hook 

API cleanup hook 
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Importance of local aggregation 

• Ideal scaling characteristics: 

– Twice the data, twice the running time 

– Twice the resources, half the running time 

• Why can’t we achieve this? 

– Synchronization requires communication 

– Communication kills performance 

• Thus… avoid communication! 

– Reduce intermediate data via local aggregation 

– Combiners can help 
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Word count: baseline 

class Mapper 

  method map(docid a, doc d) 

    for all term t in d do 

      emit(t, 1); 

 

class Reducer 

  method reduce(term t, counts [c1, c2, …]) 

    sum = 0; 

    for all counts c in [c1, c2, …] do 

      sum = sum + c; 

    emit(t, sum); 
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Word count: introducing combiners 

class Mapper 

  method map(docid a, doc d) 

    H = associative_array(term  count;) 

    for all term t in d do 

      H[t]++; 

    for all term t in H[t] do 

      emit(t, H[t]); 

 

Local aggregation inside one document reduces Map output 

(the many duplicate occurrences of the word “the” now produce 1 output pair) 
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Word count: introducing combiners 

class Mapper 

  method initialise() 

    H = associative_array(term  count); 

 

  method map(docid a, doc d) 

    for all term t in d do 

      H[t]++; 

 

  method close() 

    for all term t in H[t] do 

      emit(t, H[t]); 

 
Compute sums across documents! 

(HashMap H is alive for the entire Map Job, which processes many documents) 
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Design pattern for local aggregation 

• In-mapper combining 

– Fold the functionality of the combiner into the mapper by preserving 

state across multiple map calls 

• Advantages 

– Speed 

– Why is this faster than actual combiners? 

• Disadvantages 

– Explicit memory management required 

– Potential for order-dependent bugs 
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Combiner design 

• Combiners and reducers share same method signature 

– Effectively they are map-side reducers 

– Sometimes, reducers can serve as combiners 

– Often, not… 

• Remember: combiners are optional optimisations 

– Should not affect algorithm correctness 

– May be run 0, 1, or multiple times 

• Example: find average of integers associated with the same key 
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Computing the mean: version 1 
class Mapper 

  method map(string t, integer r) 

    emit(t, r); 

 

class Reducer 

  method reduce(string, integers [r1, r2, …]) 

    sum = 0;    count = 0; 

    for all integers r in [r1, r2, …] do 

      sum = sum + r;    count++ 

    ravg = sum / count; 

    emit(t, ravg); 

 

Can we use a reducer as the combiner? 
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Computing the mean: version 2 
class Mapper 

  method map(string t, integer r) 

    emit(t, r); 

class Combiner 

  method combine(string t, integers [r1, r2, …]) 

    sum = 0;    count = 0; 

    for all integers r in [r1, r2, …] do 

      sum = sum + r;    count++; 

     emit(t, pair(sum, count); 

class Reducer 

  method reduce(string t, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) r in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

    ravg = sum / count; 

    emit(t, ravg); 

 

Wrong! 
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Computing the mean: version 3 
class Mapper 

  method map(string t, integer r) 

    emit(t, pair(t, 1)); 

class Combiner 

  method combine(string t, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

     emit(t, pair(sum, count); 

class Reducer 

  method reduce(string t, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

    ravg = sum / count; 

    emit(t, ravg); 

 
Fixed!  

Combiner must have input and output format = Reducer input format 
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Basic Hadoop API 

Mapper 

• void setup(Mapper.Context context) 
Called once at the beginning of the task 

• void map(K key, V value, Mapper.Context context) 
Called once for each key/value pair in the input split 

• void cleanup(Mapper.Context context) 
Called once at the end of the task 

Reducer/Combiner 

• void setup(Reducer.Context context) 
Called once at the start of the task 

• void reduce(K key, Iterable<V> values, Reducer.Context ctx) 

Called once for each key 

• void cleanup(Reducer.Context context) 

Called once at the end of the task 
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Basic cluster components 

• One of each: 

– Namenode (NN): master node for HDFS 

– Jobtracker (JT): master node for job submission 

• Set of each per slave machine: 

– Tasktracker (TT): contains multiple task slots 

– Datanode (DN): serves HDFS data blocks 
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Recap 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 
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Anatomy of a job 

• MapReduce program in Hadoop = Hadoop job 

– Jobs are divided into map and reduce tasks 

– An instance of running a task is called a task attempt (occupies a slot) 

– Multiple jobs can be composed into a workflow 

• Job submission:  

– Client (i.e., driver program) creates a job, configures it, and submits it 

to jobtracker 

– That’s it! The Hadoop cluster takes over 
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Anatomy of a job 

• Behind the scenes: 

– Input splits are computed (on client end) 

– Job data (jar, configuration XML) are sent to JobTracker 

– JobTracker puts job data in shared location, enqueues tasks 

– TaskTrackers poll for tasks 

– Off to the races 



event.cwi.nl/lsde 

InputSplit InputSplit InputSplit 

Input File Input File 

InputSplit InputSplit 

Record 

Reader 

Record 

Reader 

Record 

Reader 

Record 

Reader 

Record 

Reader 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

Mapper 

Intermediates 

In
p
u
tF

o
rm

a
t 



event.cwi.nl/lsde 

… … 

InputSplit InputSplit InputSplit 

Client 

Records 

Mapper 

Record 

Reader 

Mapper 

Record 

Reader 

Mapper 

Record 

Reader 
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Mapper Mapper Mapper Mapper Mapper 

Partitioner Partitioner Partitioner Partitioner Partitioner 

Intermediates Intermediates Intermediates Intermediates Intermediates 

Reducer Reducer Reduce 

Intermediates Intermediates Intermediates 

(combiners omitted here) 



event.cwi.nl/lsde 

Reducer Reducer Reduce 
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Input and output 

• InputFormat: 

– TextInputFormat 

– KeyValueTextInputFormat 

– SequenceFileInputFormat 

– … 

• OutputFormat: 

– TextOutputFormat 

– SequenceFileOutputFormat 

– … 
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Complex data types in Hadoop 

• How do you implement complex data types? 

• The easiest way: 

– Encoded it as Text, e.g., (a, b) = “a:b” 

– Use regular expressions to parse and extract data 

– Works, but pretty hack-ish 

• The hard way: 

– Define a custom implementation of Writable(Comparable) 

– Must implement: readFields, write, (compareTo) 

– Computationally efficient, but slow for rapid prototyping 

– Implement WritableComparator hook for performance 

• Somewhere in the middle: 

– Some frameworks offers JSON support and lots of useful Hadoop 

types 
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Shuffle and sort in Hadoop 

• Probably the most complex aspect of MapReduce 

• Map side 

– Map outputs are buffered in memory in a circular buffer 

– When buffer reaches threshold, contents are spilled to disk 

– Spills merged in a single, partitioned file (sorted within each partition): 

combiner runs during the merges 

• Reduce side 

– First, map outputs are copied over to reducer machine 

– Sort is a multi-pass merge of map outputs (happens in memory and on 

disk): combiner runs during the merges 

– Final merge pass goes directly into reducer 
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Shuffle and sort 

Mapper 

Reducer 

other mappers 

other reducers 

circular 

buffer  

(memory) 

spills (on disk) 

merged spills  

(on disk) 

intermediate files  

(on disk) 

Combiner 

Combiner 
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Summary 

• The difficulties of parallel programming 

– High-level frameworks to the rescue (Google MapReduce) 

• Hadoop Architecture 

– MapReduce 

– HDFS 

• MapReduce Programming 

– Word Count Examples 

– Optimization with combiners 

– Sequential access, Bulk Transfers 

• Vs small random accesses (memory, network,disk bottleneck) 

 


